If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.0072v^2+0.19v-38=0
a = 0.0072; b = 0.19; c = -38;
Δ = b2-4ac
Δ = 0.192-4·0.0072·(-38)
Δ = 1.1305
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.19)-\sqrt{1.1305}}{2*0.0072}=\frac{-0.19-\sqrt{1.1305}}{0.0144} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.19)+\sqrt{1.1305}}{2*0.0072}=\frac{-0.19+\sqrt{1.1305}}{0.0144} $
| 8y-46=7y-37 | | 4x+6-3x+18x=18 | | -2(x+3)-1=-11 | | 23+17=8x | | 0=-16t^2+92t+20 | | 4x+7+x–3=x+12 | | -2(2x+1)+5x=-2 | | 19.5+3.3x=54 | | 7^2-y^2=6 | | -3-5m=42 | | -120/5=120/3x-90/2 | | 1/2-13/49y=24/49-1/14y | | 1-3n=13 | | 5/3a=7 | | 7x-3=12+4x | | 7a-66=a | | 8x=8x+28 | | 3x+24=x+100 | | 73+3+5x=180 | | 1300x=325 | | 0.0072v^2+0.9v=38 | | 4-2(r-5)=r-19 | | 14+4x=30 | | 5-2v=8 | | 5s-53=2s-8 | | 6=¼(x+4) | | 5y+3=22 | | 12-(2+3a)=2a+5 | | s-15=2-47 | | 25+x/2+18=90 | | 25.68=2x+32 | | 15^(2n-3)=245 |